Analog Devices

Why a Fully Integrated Translation Loop Device Achieves the Best Phase Noise Performance

We are experiencing an explosive growth in demand for bandwidth that pushes the carrier frequencies to multiple decades of gigahertz. At these extremely high frequencies, consumers can enjoy wider bandwidths without the fear of overcrowding the spectrum. However, as the frequencies increase, the instrumentation solutions targeting these devices and frequencies can become extremely complex. This stems from the need for an order of magnitude better performance in instrumentation solutions to prevent impairing the device under test. In this article, we will review several methods for low phase noise signal generation. We will demonstrate the advantages and disadvantages of these methods and introduce the translation loop device, which takes the best of all frequency generation methods without their complexity to enable ultralow phase noise signal generation.

Read more

How to Make a Digital Predistortion Solution Practical and Relevant

According to much of the promotional material for digital predistortion (DPD), its performance is based on static quantitative data. Typically, this material shows a DPD spectrum and quotes adjacent channel leakage ratio (ACLR) figures. While this approach addresses fundamental needs, it fails to capture many of the challenges, risks, and performance trade-offs that occur in real-world deployments. The rapid transition to 5G introduces a plethora of new challenges and scenarios that algorithm developers and equipment vendors need to pay more attention to. Underpinning the static performance must be the capability to maintain performance and stability in a complex environment where many elements are in a state of flux.

Read more