FPGAs

Fundamentals of FPGAs: What Are FPGAs and Why Are They Needed?

Optimal processing solutions are often provided by combinations of RISC, CISC, graphics processors and FPGAs, by FPGAs on their own, or by FPGAs that boast hard processor cores as part of their fabric. However, many designers are unfamiliar with the capabilities of FPGAs, how they’ve evolved, and how to use them. This article, Part 1 of a 5-part series, will discuss the fundamentals of FPGAs and introduce example solutions from major providers. Part 2, Part 3, Part 4, and Part 5 will focus on the FPGA device families and design tools offered from Lattice Semiconductor, Microchip, Altera, and Xilinx.

Read more

Powering Your FPGA Applications

FPGAs are widely used in a variety of products due to their many advantages, including short development time, cost effectiveness, and flexibility to reconfigure or update in the field. Many new FPGAs employ advanced technology to achieve low power consumption and high performance. They use a new fabrication process that tends to require a lower core voltage, which extends the supply voltage range and increases current capability. Many FPGAs also have varying power supply requirements for each power rail. These power rails may have a different voltage output requirement, sequencing requirement, and noise sensitivity. Power module devices are ideal for addressing these power supply requirements.

Read more