World’s first integrated thermocouple electromotive force-to-degrees Celsius converter from Microchip saves design effort, space and cost

21 SEPTEMBER 2015

Microchip announces the MCP9600, the world’s first thermocouple-conditioning integrated circuit to combine precision instrumentation, a precision temperature sensor and a precision, high-resolution Analogue-to-Digital Converter (ADC), in addition to a maths engine pre-programmed with the firmware to support a broad range of standard thermocouple types: K, J, T, N, S, E, B and R. Thermocouples are one of the most ubiquitous temperature-measurement devices, due to their robustness and accuracy in harsh, high-temperature environments, and their ability to measure temperature over an extremely wide range. The MCP9600 simplifies thermocouple designs by integrating a number of discrete devices into one chip, which also lowers board area, cost and power consumption.
Thermocouples are widely used to measure temperature by the designers of industrial, consumer, automotive/ aerospace and petrochemical applications, among others. The MCP9600 provides them with the world’s first plug-and-play solution for creating thermocouple-based designs, because it eliminates the design expertise required for a discrete implementation, such as firmware development using an MCU’s maths engine. Designers no longer have to create precision instrumentation circuitry to accurately measure a thermocouple’s microvolt-level signals, nor do they have to design ADC circuitry for precise temperature calculations. With the MCP9600’s integrated cold-junction compensation, calculating the “Hot” junction temperature of a thermocouple does not necessitate thermal design expertise to precisely measure the reference temperature of the thermocouple’s “Cold” junction.

Microchip Technology
www.microchip.com/MCP9600-Page-063015a

Leave a Reply

Your email address will not be published. Required fields are marked *

  • We use your personal data ONLY to respond to your comments/requests.
  • To receive responses that are appropriate to your requests, we may transfer your email address and your name to the author of the article.
  • For more information on our Privacy Policy and Personal Data Processing, please visit the page: Privacy Policy (GDPR) & Cookies.
  • If you have any questions or concerns regarding the way we process your personal data, you can contact our Data Protection Officer at: gdpr@esp2000.ro
  • Subscribe to our magazine newsletter