Maxim High-Performance PMICs: Powering Next-Generation Consumer Applications

24 JULY 2018

MAX77714 and MAX77752 deliver total power management for deep-learning SoCs, FPGAs and multimedia application processors at ultra-low power

With a pair of feature-rich, high-performance and scalable power-management ICs (PMICs) from Maxim Integrated Products, Inc. designers of mobile systems can now maximize performance per watt while increasing system efficiency for computationally intensive deep-learning systems on chip (SoCs), FPGAs and application processors. The MAX77714 and MAX77752 address a broad spectrum of applications ranging from augmented reality/virtual reality (AR/VR), gaming, solid-state drives (SSDs), security and industrial internet of things (IIoT) to handheld devices such as cameras and home automation hubs. Architected to deliver numerous benefits, including consuming 40 percent less power than standard solutions, the PMICs extend battery life while providing the most compact form factor in the market.

Computational power is rising in consumer electronics as designers move toward higher performing application processors and SoCs for a diverse range of mobile devices. However, users expect their battery-operated, always-on electronics to run cool and for long periods of time. Designers face the challenge of reducing board space and component cost of these consumer devices while delivering high efficiency, high horsepower and flexible power sequencing.

Maxim’s high-performance PMICs offer complete power management in single-chip solutions so that application processors can operate at peak levels and deliver a stable, high-quality user experience. The two PMICs also integrate multiple features, allowing designers to reduce the solution footprint and system cost.

MAX77714: High-Performance PMIC for Computationally Intensive Applications
The MAX77714 PMIC delivers a complete, efficient power-management solution in a compact package to enable multi-core processor-based systems to operate at maximum performance with greater than 90 percent efficiency at 3.6VIN, 1.1VOUT. With a 70-bump, 4.1mm × 3.25mm × 0.7mm WLP package, it enables thinner, smaller devices and extends battery life up to 40 percent compared to stand-alone solutions. It reduces design cycle time, component count, and bill of material (BOM) costs compared to discrete solutions by integrating 13 regulators, including 9 low-dropout linear regulators, real-time clock (RTC), backup battery charger, watchdog timer, flexible power sequencing and 8 general-purpose input/outputs (GPIOs).

MAX77752: High-Performance, Compact, Multi-Channel PMIC with Hot-Plugging Capabilities
The MAX77752 is a multi-channel, compact and integrated PMIC designed for applications with multiple power rails and hot-plugging capabilities. It improves efficiency up to 90 percent at 3.6VIN, 1.8VOUT for longer battery life and includes a flexible power sequencer (FPS) to allow hardware- or software-controlled power up. It reduces design cycle time, component count and BOM costs by integrating three buck regulators (with high-accuracy brownout comparators), one low-dropout linear regulator, two dedicated load switch controllers, one in-rush current limiter, two external regulators to enable outputs, voltage monitor for backup power control and a dedicated digital output resource for logic control. The MAX77752 comes in a compact 40-pin, 5mm × 5mm × 0.8mm, 0.4mm-pitch TQFN package.

Maxim Integrated | www.maximintegrated.com

Leave a Reply

Your email address will not be published. Required fields are marked *

  • We use your personal data ONLY to respond to your comments/requests.
  • To receive responses that are appropriate to your requests, we may transfer your email address and your name to the author of the article.
  • For more information on our Privacy Policy and Personal Data Processing, please visit the page: Privacy Policy (GDPR) & Cookies.
  • If you have any questions or concerns regarding the way we process your personal data, you can contact our Data Protection Officer at: gdpr@esp2000.ro
  • Subscribe to our magazine newsletter